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The Multipole Expansion of Realistic Effective interactions in Nuclei* 

When a realistic nucleon-nucleon interaction with a repulsive core is otherwise 
attractive, a fair approximation to the corresponding reaction matrix or effective 
interaction is obtained by using the Moszkowski-Scott separation method [l] 
in lowest order, which gives just the long-range part of the free two-nucleon 
interaction. This results in an exponential-like outer region with a cutoff at the 
separation distance d. Pinkston and Philpott suggested [2] the use of a sum of cutoff 
Yukawa terms to fit such a truncated potential. The effective potential, or t matrix, 
for two interacting particles separated by a distance r12 is written as 

t(r12) = - v c hzg(~~rl2h (1) n 

where n is an integer, r,, = 1 rl - r2 I = (r12 + r22 - 2r,r, cos d12)li2, and 

g@r12) = e-BrV+12 if r12 2 d, 
(2) 

r.rz 0 if r12 < d. 

The parameter 01 in Eq. (1) is determined by the asymptotic form of t. For 
example, the Hamada-Johnston potential [3] has a one-pion exchange tail with 
01 = 0.7067 x 1013 cm-r. 

For some applications, such as a microscopic description of elastic [4] and 
inelastic [5] scattering, it is necessary to have the expansion of t in multipoles of 
the individual nucleon coordinates rl and r2 , 

t(r12) = 47~ C tL(rl , r2) YLVJ YF*V2). 

L 
(3) 

Multipoles may be required for values of L up to a few times 10. The various 
terms of Eq. (1) can be expanded in the same way. 

* Research sponsored by the U. S. Atomic Energy Commission under contract with the Union 
Carbide Corporation. 
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The multipole coefficients of gcBr,,) are then given by 

where ~1 = cos e,, . If I rl - r2 I > d, then the g&3, r, , rz> = gLy@, r, , r,), which 
are the multipole coefficients of an ordinary Yukawa interaction, and are given by 
the well-known expression 

tky(B, rl , r2> = (r62r1r2Y/2 &+112@b) ~L+1~2W<), (5) 

where r,(rJ is the greater (lesser) of r, and r, . The IL+lla and KL+l12 are modified 
spherical Bessel functions of the first and third kinds [6], respectively, and are 
generated by recurrence using the relations 

2L + 3 

(6) 

For the I a power series expansion is used for x < 0.1, downward recursion 
for 2x/L < 6, and upward recursion for 2x/L > 6, while upward recursion is used 
for the K for all x. 

One of the advantages of fitting the effective interaction with a sum of cutoff 
Yukawa terms is now apparent. A typical elastic or inelastic scattering calculation 
might require r, , r, = 0, 0.1, 0.2 ,..., 15.0 (in units of lo-l8 cm); hence, 1 r, - r, 1 = 
0, 0.1, 0.2 ,..., 15.0. For those values of 1 r, - r, 1 > d m 1.0, the g&3, r, , r& 
can be computed with the recurrence relations of Eq. (6). For given values of /3, 
rl , and r2 , this is a very fast way of obtaining the multipole coefficients for all 
values of L. 

If 1 r, - r2 / < d, then Eq. (4) can be written as 

g&t rl , rJ = ay<P, rl , r2> - !j 1’ K2 y Br12 J’L(P) dtL> 

where y = (r12 + r22 - d2)/2rlr2 . Using the expansion of P&) in powers of 
(1 - t-4, 
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enables one to write the gL for the cutoff Yukawa as 

SL@, Yl , ye) = gLYs, r1, r2) - -L 5 
(-l)L (L + 1)! 

/3 z=. 22z+1(L - l)! (E!)2 (rlr2)lf1 

s 

d 

X ecBz[x2 - (rl - r2)2]z dx 
I?yTzI 

if I r1 - r2 I ==c d, 

= gLy@, r1 , r2) if 1 rl - r2 / > d. (9) 

The corresponding multipole coefficients t, of the t matrix are then given by 

tL(rl , r2) = - v C &gL(w rl , r2>. 12 (10) 

The convenient feature of this algorithm is that the integrals in Eq. (lo), 

Jdl rl - r2 I) = jl,-,, C A, g [x2 - (rl - r2)2]z dx, (11) 
n 

which must be computed extremely accurately for large L, do not depend on L 
and depend on r, and r2 only in the combination I rl - r2 I = 0,O.l) 0.2 ,..., d SW 1 .O, 
typically. A four-point Newton-Cotes integration formula with 800 mesh points 
was found to give sufficient accuracy for L 5 25. These integrals are computed 
and stored as a function of 1 = 0, I,..., Lm,, and I rl - r2 I at the beginning of 
the calculation and used each time a new tL is needed. 

Several checks on the accuracy of this algorithm were made, one of which 
was the direct evaluation of Eq. (4) using Simpson’s rule for various values of L, 
rl , and r2 . For rl and r2 near zero, the values of the g, for L 2 20 are not given 
very accurately by the algorithm. However, for nucleon scattering at energies 
less than about 100 MeV, the high angular momentum partial waves are vanishingly 
small near the origin, so that inaccuracy in the g, in this region will have no 
effect on the scattering cross sections. With this exception, the algorithm yields 
very good accuracy. Since the integrals J1 must be computed only once, the 
calculation of the g, proceeds very quickly, requiring only slightly more computa- 
tion time than the ordinary Yukawa interaction. 

The subroutines for computing the multipole coefficients of a sum of up to six 
cutoff Yukawa terms (n < 6) using the method described above has been included 
in the FORTRAN code ATHENA-IV [7], which is used to calculate nuclear form 
factors for inealstic scattering. This code can be obtained upon request from the 
Argonne Code Center, Argonne National Laboratory. 
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This algorithm is useful for calculating the multipole coefficients of any effective 
interaction that can be fitted by a sum of cutoff Yukawa terms. For example, 
a very accurate fit to the long-range part of the even-state Hamada-Johnston 
potential [2] has been obtained using an unpublished routine written by R. Stafford. 
A sum of six terms was used in Eq. (1). The resulting coefficients A, for the central 
interaction in singlet-even and triplet-even states and the second-order contribution 
from the tensor force to the interaction in triplet-even states are given in Ref. [7]. 

Another popular effective interaction is the long-range part of the Kallio- 
Kolltveit potential [8], the radial part of which has the form 

gKK(ar12) = e-“‘12 if r12 > d, 

= 0 if r12 < d. 

Since 
d - 

e -a?2 = _ 1 + 01 - 

i da i 
e OLT12 I ar12 , 

(12) 

(13) 

we can use the central difference approximation for the derivative to write the 
multipole coefficients of gKK in terms of three cutoff Yukawa terms, 

= -a(~, 5 , r2) - ~ij Ma + da, r19 r2) - da - Aa, rl , r2)l, (14) 

where the g, are given by Eq. (9). 
In conclusion, this technique of fitting the effective interaction with a sum of 

cutoff Yukawa terms and using the algorithm (9) to calculate the multipole 
coefficients of each term, constitutes a fast, accurate method of generating the 
multipole components of realistic interactions in nuclei. 
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